Nepřihlášený uživatel
You are here: UCT Prague - Technopark Kralupy  → Branch Focus → Metallic materials

Metallic Construction Materials

 

Our group provides services in research and development as well as consultancy services in the field of corrosion protection of metallic structures and devices to customers from industry and research institutions with the goal to prevent corrosion failures and minimize costs incurred by corrosion.

Corrosion is defined as a physicochemical interaction between a metal and its environment that results in changes in the properties of the metal, and which may lead to significant impairment of the function of the metal, the environment, or the technical system, of which these form a part. Thus, it is not only about the loss of functional (mechanical, heat transfer, electrical, aesthetic) properties of metallic constructions or parts – corrosion often leads to release of undesirable corrosion products or metal ions to the environment, which might be of utmost importance in case of e.g. biomaterials in human body or pollution in food and drug production.

Besides uniform corrosion exemplified by atmospheric corrosion of steel and cast iron, there is a number of irregular forms of corrosion degradation: galvanic corrosion at contact of two different metals, pitting and crevice corrosion, intergranular corrosion, exfoliation of aluminium alloys, selective corrosion, stress corrosion cracking, fatigue corrosion, hydrogen embrittlement, tribocorrosion and others. Impact of irregular forms of corrosion is generally more dangerous as constructions or components in an apparently good state can fail unexpectedly.

Corrosion losses can be minimised using a number of well-accepted techniques, such as optimal material selection, corrosion inhibition, electrochemical protection, coating application and construction design modifications. A large part of corrosion problems can be avoided by consistent application of currently available knowledge and corrosion protection methods, in particular in the design, planning, and preparation phases. Further savings are possible when progressive materials and technologies are applied. Our team of corrosion engineers is ready to provide initial courtesy consultations and collaborate in your projects. 

 Foto 1-1 vzorky (ořez 215*215px) Foto 1-2 vzorky UV (ořez 215*215px)  Foto 1-3 sonda (ořez 215*215px)

Accelerated corrosion tests

  Our laboratory equipped with modern corrosion chambers for cyclic corrosion testing will help you reduce the negative effects of corrosion. In addition to most standardized tests, we can also propose specific procedures simulating non-traditional environments and applications.

Exposures at atmospheric field sites

  We will place your samples at our monitored outdoor weathering sites in Kralupy nad Vltavou (urban site) and in Ostrava-Radvanice (industrial site with the highest air concentration of SO2 in the Czech Republic). We can also arrange exposures at our partner stations in other regions of the Czech Republic, Europe, USA, China and other countries.

Corrosion monitoring 

In order to optimize corrosion protection measures, it is necessary to know the actual aggressiveness of the environment. Otherwise, there is a risk the corrosion protection being inadequate or excessive.

 

Foto 2-1 fragment (ořez 215*215px) Foto 2-2 struktura (ořez 215*215px)
Consultancies and expert activities. Selection of optimal material or construction design, design of a corrosion protection system, expert’s reports on causes of corrosion failures, lifetime estimates. Research and development in corrosion with a focus on atmospheric corrosion. Development of metallic and organic coatings and duplex coating systems and study of their corrosion mechanisms, stress corrosion cracking, hydrogen embrittlement, protection of metallic objects of cultural heritage, electrochemistry.

 

Selected projects

Foto 3-1 vodík (ořez 215*215px) Foto 3-2 vodík struktura (ořez 215*215px) Foto 3-3 Dlouhodobá odolnost předlakovaných plechů (ořez 215*215px)
Effect of the microstructure of high strength steels on hydrogen induced corrosion (Grant Agency of the Czech Republic, 2017-2019). Study of the mechanism of hydrogen induced cracking using model materials. Hydrogen embrittlement of high strength steels (voestalpine Stahl, 2016-2019). The relationship between atmospheric corrosion, the danger of hydrogen entry into the structure of advanced high strength steels and the brittle fracture. Long-term resistance of pre-painted steel sheets, LongTermCoil (ArcelorMittal, 2017-2022). Study of the representativeness of outdoor exposures of ECCA panels and the mechanism of degradation of duplex coatings for the protection of steel roofing.
 Foto 4-1 Vývoj plnícího a uzavíracího monobloku (ořez 215*215px)  Foto 4-2 Korozivita chladících kapalin (ořez 215*215px)  Foto 4-3 Klasifikační systém pro horolezecké kotvy (ořez 215*215px)

Development of a filling line for corrosive substances 

(Fillmatech with a support of OP PIK Programme, 2017-2019) Material selection for highly aggressive environment of concentrated chemicals.

Methodology of corrosivity classification of indoor environments for lead collection objects

(Ministry of Culture, programme NAKI II, 2018–2022).

A study of the degradation of lead cultural heritage objects in archives, libraries and museums.

Classification system for climbing anchors

(UIAA - International Climbing and Mountaineering Federation, 2016-2018). Determination of causes of corrosion damage to permanent stainless steel anchors and development of a new classification system.

 Foto 5-1 Analýza mechanismu korozního napadení rozvodů ropy (ořez 215*215px)  Foto 5-2 oko (ořez 215*215px)  Foto 5-3 Koroze spojovacích prvků (ořez 215*215px)
Mechanism of corrosion degradation of oil pipelines (MERO, 2017). Study of the causes of corrosion damage of pipeline inner walls and design of corrective measures. Development of alloy coatings for the protection of continuously coated wires (Bekaert, 2017). Collaboration on pilot testing of new metal coating systems and study of their microstructure. Corrosivity of engine coolants (Škoda Auto, 2016-2018). Determination of degradation products of cooling liquids, factors causing their degradation and study of their corrosivity towards parts of cooling circuits.

  

Our customers

Logo 1-1 Voestalpine (originál) Logo 1-2 ArcelorMittal (originál) Logo 1-3 Fillmatech (originál) Logo 1-4 Škoda auto (originál) Logo 1-5 UIAA (originál)
 Logo 2-1 MERO (originál)  Logo 2-2 Bekaert (originál)  Logo 2-3 Hilti (originál)  Logo 2-4 Gestamp (originál)  Logo 2-5 Královopolská RIA (originál)
Logo 3-1 Institut de la Corrosion (originál)   Logo 3-2 Nemocnice Hořovice (originál)  Logo 3-3 Fireclay (originál)  Logo 3-4 Junker (originál)  Logo 3-5 HQH system (originál)
 Logo 4-1 Ensepatec (originál)  Logo 4-2 Kovo-plazma (originál)  Logo 4-3 VZÚ Plzeň (originál)  Logo 4-4 Continental (originál)  Logo 4-5 MANN+HUMMEL (originál)
 Logo 5-1 VAK Kroměříž (originál)  Logo 5-2 AV EQUEN (originál)  Logo 5-3 CEITEC (originál)  Logo 5-4 MZ chrom (originál)  Logo 5-5 EYELEVEL (originál)
 Logo 6-1 JIPAM CNC (originál)  Logo 6-2 Strojírny Poldi (originál)  Logo 6-3 Vítkovice cyliders (originál)  Logo 6-4 5M (originál)  Logo 6-5 Lindab (originál)
 Logo 7-1 Funchem (originál)  Logo 7-2 Vitana (originál)  Logo 7-3 King & Wood Mallesons (originál)  Logo 7-4 ALGON (originál)  Logo 7-5 Český aeroholding (originál)

Key equipment

Foto 6-1 ClimaCorr CC 1000 TL (ořez 215*215px) Foto 6-2 ControlArt Type 2 (ořez 215*215px) Foto 6-3 VLM CCT 400 FL I (ořez 215*215px)
Automatic corrosion chamber VLM ClimaCorr CC 1000 TL with a capacity of 1080 liters for cyclic corrosion tests with temperature range -40 to 80 ° C ControlArt Type 2 automatic corrosion chamber for cyclic corrosion tests with both spray and rain pollution capabilities. Chamber VLM CCT 400 FL I for neutral salt spray and condensation tests.
 Foto 7-1 Liebisch KB 300 (ořez 215*215px)  Foto 7-2 AFM AIST-NT SmartSPM 1000 (ořez 215*215px)  Foto 7-3 Biologic SP-200 (ořez 215*215px)
Chamber Liebisch KB 300 for tests in presence of sulphur dioxide (e.g., Kesternisch test). AIST-NT SmartSPM 1000 atomic force microscope (AFM) AIST-NT SmartSPM 1000 with Kelvin Probe (SKPFM)Atomic force microscope (AFM) AIST-NT SmartSPM 1000 AIST-NT with Kelvin Probe (SKPFM). Potentiostat Biologic SP-200 for electrochemical measurements including electrochemical impedance spectroscopy.
 XRF (ořez 215*215px)    
 

Portable x-ray fluorescence spectrometer (XRF)

Olympus Vanta for precise elemental analysis

of most metallic materials

   

 

Additional equipment

  • Large-volume chamber MATEST C313 with temperature control from -25 to 70 ° C and relative humidity control from 10 to 98%.
  • Resistometric sensors and measuring units.
  • Optical microscopes and photographic equipment for sample documentation.
  • Digital dew point meter OPTIDEW Vision.
  • Devices for determining properties of organic coatings: thickness, impact resistance, bending resistance, adhesion (pull-off test), hardness.
  • Ion chromatograph.
  • Scanning electron microscope with energy dispersion analyzer (SEM-EDX), delivery 2018.
  • Portable x-ray fluorescence spectrometer (XRF) Olympus Vanta.
  • Analytical instruments.

 

People

Foto 8-1 Ing. Prošek (ořez 215*215px) Foto 8-2 Ing. Šefl (ořez 215*215px) Foto 8-3 Ing. Švadlena (ořez 215*215px) 

Dr. Tomáš Prošek
Group leader

metallic and organic coatings, corrosion monitoring

Dr. Václav Šefl
Project manager

consultancy services

 Jan Švadlena
Researcher

protection of cultural heritage

 Foto 9-1 Ing. Novikova (ořez 215*215px)  Foto 9-2 p. Komůrka (ořez 215*215px)  Foto 9-3 p. Hoseinpoor (ořez 215*215px)

Darya Rudomilova

Researcher

high strength steels and hydrogen embrittlement

 Milan Komůrka
Technician

corrosion testing

 Mehrdad Zia Hoseinpoor
Researcher

starting January 2018

 

Contact

Department of Metallic Construction Materials
Technopark Kralupy of the University of Chemistry and Technology, Prague

kovy@technopark-kralupy.cz
Phone: +420 220 446 104, +420 723 242 413

© 2017 Technopark Kralupy

: 15.2.2024 14:44, : Jan Prošek

VTP
Technopark Kralupy
Náměstí G. Karse 7/2
Kralupy nad Vltavou
278 01

info@technopark-kralupy.cz
© 2017 Technopark Kralupy
eu
^