Souhrn všech aktivit skupiny Kovové konstrukční materiály je zde.
Vodíkové křehnutí představuje problém v různých průmyslových odvětvích, mezi které patří energetika, letecký, automobilový či námořní průmysl. Vodík může vstoupit do materiálu jak při kontaktu s korozním prostředím, tak i při expozici v plynném vodíku. Při interakci vodíku s kovem, zejména při zvýšeném zatížení, může dojít ke ztrátě mechanických vlastností materiálu, především tažnosti. Pro určení náchylnosti materiálu k vodíkovému křehnutí je klíčové určit kritickou koncentraci vodíku, která poškození způsobuje. Tento parametr lze stanovit navodíkováním vzorků na specifickou úroveň a následným provedením mechanických zkoušek při pomalé rychlosti deformace.
Pro hlubší analýzu je efektivním nástrojem permeační test. Ten umožňuje stanovit rychlost toku vodíku materiálem a zachycení vodíku ve vodíkových pastech. Úpravou hustoty těchto pastí, například změnou tepelného zpracování, lze ovlivnit zadržení vodíku a tím snížit riziko vodíkového zkřehnutí. Vazebnou energii jednotlivých pastí a také obsah vodíku v materiálu lze určit pomocí termální desorpční analýzy.
Při studiu absorpce vodíku během atmosférické koroze lze využit rastrovací Kelvinovou sondou, která umožňuje vizualizaci toku vodíku vzorkem s velmi vysokou citlivostí. Poměry katodických reakcí během korozního děje, redukci kyslíku a vývoj vodíku, lze stanovit pomocí respirometrie.
Navodíkování vzorků
Navodíkování vzorků slouží k částečnému nebo úplnému nasycení vzorků vodíkem pro provedení dalších analýz a testů, jako analýza zachyceného vodíku, studium kinetiky desorpce a posouzení vlivu vodíku na mechanické chování materiálu. Nabízíme tři způsoby navodíkování. Elektrochemické sycení
Elektrochemické sycení se používá pro nasycení vzorků vodíkem za kontrolovaných podmínek. Na základě dlouholetých zkušeností volíme nejvhodnější parametry sycení, včetně složení elektrolytu, proudové hustoty, potenciálu a doby sycení, aby bylo dosaženo požadované úrovně nasycení vodíkem. Tato metoda umožňuje přesnou kontrolu podmínek sycení, vyznačuje se vysokou reprodukovatelností a je rychlejší v porovnání s jinými metodami sycení. Korozní sycení
Při korozním sycení je vodík absorbován během korozního děje. Tento typ sycení umožňuje simulovat vstup vodíku do materiálu v reálném prostředí. Expozici lze provést v kombinaci s jakoukoliv nabízenou korozní zkouškou. Dále je možné využít korozní expozici v ponoru roztoku elektrolytu. Rovněž je možné provést expozici vzorků po manuální aplikaci korozního aktivátoru a expozici za konstantní vlhkosti. Po uplynutí doby expozice a odstranění korozních produktů lze změřit obsah vodíku adsorbovaného během expozice. Korozní sycení lze také zahrnout jako krok před provedením zkoušky za pomalé rychlosti deformace a vyhodnotit vliv korozního vodíku na mechanické vlastnosti. Expozice v autoklávu
Sycení v autoklávu umožňuje simulovat reálné podmínky prostředí s vysokotlakým vodíkem, například v plynárenském průmyslu. Expozice může probíhat v suchém plynu, v kombinaci s ponorem, nebo expozicí v páře. V expozicích do 100 barů a 150 °C lze použít čistý vodík nebo směs vodíku s jinými plyny. Doba expozice se pohybuje od několika dní až po několik měsíců, v závislosti na simulovaných podmínkách. Po vyjmutí vzorků z autoklávu jsme schopni eliminovat desorpci vodíku uložením vzorků v kapalném dusíku do provedení analýzy. |
|
Tahová zkouška za pomalé rychlosti deformaceTestování při pomalé rychlosti deformace zajišťuje dostatek času pro difuzi vodíku do kritických míst, což umožňuje posoudit vliv vodíku na mechanické chování materiálu. Porovnáním křivek napětí-deformace pro vzorky s určitým obsahem vodíku a referenčními vzorky bez vodíku lze vyhodnotit změny tažnosti, pevnosti a průřezové plochy. Stanovení indexu vodíkového zkřehnutí je důležitým kritériem při posuzování odolnosti materiálů vůči vodíku. Prvním krokem je návrh a příprava plochých nebo válcových vzorků o geometrií splňující požadavky normy ISO 6892. Lze připravit vzorky i s povlakem, pokud je zájem o stanovení vlivu povlaku na vstup a působení vodíku v materiálu. Vzorky mohou být předsyceny vodíkem elektrochemickou cestou, během expozice v korozním prostředí nebo v plynném vodíku, viz informace o těchto možnostech níže. Pro udržení stálé vysoké koncentrace vodíku v materiálu může elektrochemické nebo korozní sycení pokračovat i během tahové zkoušky, což je klíčové například u ocelí s vysokou rychlostí difúze a desorpce vodíku. Tahová zkouška se provádí na tahovém stroji s rychlostí deformace 4∙10-7 s-1. Vzorky sycené vodíkem a referenční vzorky bez vodíku jsou testovány pro srovnání. Výstupem zkoušky jsou diagramy napětí-deformace, které poskytují informace o lomovém chování vzorků. Kromě analýzy změn tažnosti a pevnosti způsobených přítomností vodíku se zkoumá také změna průřezu vzorků. Index vodíkového zkřehnutí se vypočítá na základě změn tažnosti, pevnosti nebo průřezové plochy po přetržení. Vyhodnocuje se procentuální změna jedné z těchto vlastností mezi nasycenými a nenasycenými vzorky. Po přetržení vzorku se provádí fraktografická analýza pomoci skenovacího elektronového mikroskopu. Tato analýza pomáhá charakterizovat lomové plochy a poskytuje další informace o vlivu vodíku na materiál. Pro vodíkem způsobené poškození je typická změna typu lomu z tvárného na křehký. Při nízkých koncentracích vodíku v materiálu je však vyžadována detailní analýza méně výrazných změn na lomové ploše. |
|
Výpočetní mikrotomografie
Mikrotomograf Diondo d2 nabízí široké spektrum možností[DR1] pro studium materiálů, včetně analýzy mechanismů poškození způsobeného vodíkem. Tato nedestruktivní metoda umožňuje detailní 3D rekonstrukci struktury vzorků. Princip metody spočívá v měření intenzity rentgenového záření po průchodu vzorkem. Při interakci s materiálem dochází k absorpci a rozptylu záření. Výsledný model je sestaven ze získaných projekcí pomocí pokročilých matematických algoritmů. Mikrotomograf může být efektivním nástrojem pro studium vodíkové křehkosti, zejména pro analýzu šíření trhlin. Tato analýza je klíčová pro lepší pochopení, jak vodík ovlivňuje iniciaci a šíření trhlin. Jednou z možností studia šíření trhlin je přerušení tahové zkoušky za pomalé rychlosti deformace a provedení měření, přitom je vhodné porovnat vzorek nasycený vodíkem a referenční vzorek bez vodíku. Další možností je skenování vzorku během aplikace konstantního zatížení pomocí zatěžovacího stolku. Taková zkouška může poskytnout velmi cenné informace o průběhu lomu za působení vodíku v reálném čase. Díky vysokému rozlišení přístroje až 2 µm je možné detailní zobrazení mikrotrhlin v celém objemu materiálu. Lze měřit délku, šířku a stanovit směr šíření trhlin. Získané informace mohou být užitečné k hodnocení odolnosti materiálů vůči vodíkové křehkosti. |
|
Zatěžovací stolek pro aplikaci napětí během skenování |
Termální desorpční analýza
Tato metoda je založena na ohřevu nebo fúzi vzorku v nosném inertním plynu, kdy je na základě změny tepelné vodivosti nosného plynu s vodíkem desorbovaným ze vzorku vyhodnoceno množství vodíku v kovu přítomné. Kovové vzorky jsou před analýzou nasyceny jedním z výše popsaných postupů a uchovány v kapalném dusíku až do analýzy, tak aby nedošlo k desorpci vodíku před samotnou analýzou. Na základě použité teploty při analýze lze stanovit celkový vodík v impulzní peci, kdy je vzorek roztaven v inertním plynu nebo vzorek zahřát v externí infračervené peci na požadovanou teplotu a analyzovat pouze difuzibilní vodík. Uvolněný vodík je nesen inertním plynem do detekčního systému, kde je za pomoci TCD, teplotně vodivostního detektoru, přesně stanoven absolutní obsah vodíku s přesností na setiny ppm. Typickým výstupem je desorpční křivka, z které lze integrací určit množství absorbovaného vodíku, případně další vodíkové charakteristiky materiálu jako je typ a hustota vodíkových pastí v mikrostruktuře kovu.
Analyzovat je možné jak kovy s vysokým bodem tání jako např. Ti, Ta, Zr, Nb a jejich slitiny, tak i dalších běžné kovy, slitiny kovů a neželezných kovů.
Analyzátor vodíku Bruker G8 Galileo s vnější infračervenou pecí a výstup analýzy – desorpční křivka vodíku |
Elektrochemický permeační test
Pomocí elektrochemického permeačního testu lze stanovit difuzní koeficient vodíku a hustotu vodíkových pastí ve studovaném materiálu. Tyto informace jsou klíčové pro posouzení rizika vodíkového křehnutí a následný výběr nebo optimalizaci materiálu.
Plochý tenký vzorek studovaného materiálu slouží membránou mezi dvěma celami: sytící a detekční. V klasickém uspořádání je vzorek sycen elektrochemicky, vodík procházející vzorkem je detekován na opačné straně membrány. V detekční cele je vzorek polarizován anodicky a je zaznamenávána proudová hustota. Difundující atomární vodík je oxidován na ionty, což se projevuje zvýšením měřeného proudu. K určení difuzního koeficientu lze použit jak standardní výpočet, tak i fitování permační křivky pomocí numerické metody. Střídání iniciaci a omezení vstupu vodíku na sytící straně umožňuje sledovat zachycení vodíku v pastech. Analýza rychlosti poklesu proudu na detekční straně poskytuje informace o hustotě vratných vodíkových pastí, které jsou klíčové z hlediska rizika vodíkové křehkosti.
Permeační test lze modifikovat tak, že místo elektrochemického sycení je vzorek vystaven atmosférické korozní expozici nebo ponořen v roztoku elektrolytu. Tato modifikace činí permeační test vhodnou metodou pro sledování toku vodíku materiálem za podmínek simulujících reálné korozní prostředí, například ponor v mořské vodě.
Proud na detekční straně vzorku je měřen v tříelektrodovém zapojení pomocí vysoce citlivého potenciostatu Biologic SP-200. Permeační test je mimořádně citlivý i na malé toky vodíku skrz vzorek, avšak vyžaduje pečlivou přípravu vzorků. Klíčovým krokem je aplikace vrstvy palladia na detekční straně vzorku. Tato palladiová vrstva zamezuje vzniku koroze během anodické polarizace, což by jinak mohlo vést k artefaktům měření.
Schéma permeačního testu v klasickém uspořádání |
Rastrovací Kelvinova sonda
Rastrovací Kelvinova sonda představuje účinnou metodu detekce vodíku v kovech, ale používá se i pro jiné výzkumné úkoly. Měření pomocí Kelvinovy sondy poskytuje informace o rozložení potenciálu na povrchu vzorku za atmosférických podmínek. Sonda měří tzv. kontaktní potenciálový rozdíl mezi dvěma elektrodami, samotnou sondou a vzorkem. Potenciál jehly je kalibrován, což umožňuje určení potenciálu vzorku oproti referenční elektrodě.
Princip detekce vodíku spočívá v interakci vodíku s vrstvou na povrchu kovu. U oceli se jedná o přirozenou oxidickou vrstvu, kde vodík mění poměr Fe2+ k Fe3+, což vede k poklesu měřeného potenciálu v místě detekce. U jiných kovů může detekční vrstvu tvořit deponované palladium, které funguje jako vodíková elektroda. Při lokálním toku vodíku materiálem jsou detekovány oblasti s nižším potenciálem oproti referenční oblasti bez vodíku.
Metoda je velmi užitečná při studiu vstupu vodíku za atmosférických podmínek. Vzorek, podobně jako v permeačním testu, funguje jako membrána pro vodík. Na jedné straně vzorek koroduje, vodík vstupuje do kovu, dále difunduje přes něj a je detekován na opačné straně pomocí Kelvinovy sondy. Přístroj je vybaven unikátní celou, která zajišťuje kontrolu vlhkosti na korodující straně vzorku. Kamerový systém pravidelně snímá průběh korozní reakce. Na korodující straně vzorku lze volit různé podmínky expozice, jako množství korozního aktivátoru, lokální či plošná kontaminace, relativní vlhkost včetně střídání suché a vlhké fáze. Vzorek může být s povlakem, s defektem v povlaku nebo bez. Například sledování lokálního vstupu vodíku po kontaminaci vzorku kapkou roztoku NaCl je velmi zajímavé. U povlakované oceli s defektem v povlaku lze studovat efekt galvanického článku na vstup vodíku.
Příklad detekce vodíku ve vzorku oceli se zinkovým povlakem. Nahoře: korodující strana vzorku s umělým defektem v povlaku, lokální kontaminace kapkou roztoku chloridu sodného. Dole: potenciálové mapy naměřené na opačné straně vzorku, kde je detekován vodík.
Metoda není omezená pouze na korozně indukovaný vstup vodíku. Pomoci Kelvinovy sondy se dá sledovat i desorpci vodíku z povrchu předem syceného vzorku, elektrochemicky nebo v plynu.
Paralelní měření pomocí permeačního testu za stejných podmínek na vstupní straně umožňuje převést hodnoty poklesu potenciálu na množství vodíku absorbovaného do kovu. Tím lze kvantitativně porovnat efektivitu vstupu vodíku za různých podmínek.
Mezi hlavní výhody Kelvinovy sondy patří její vysoká citlivost i k nízkému toku vodíku vzorkem a možnost sledovat lokální vstup vodíku. Sonda má laterální rozlišení přibližně 150 µm. Potenciálové mapy nabízejí informace o rozložení vstupu vodíku na povrchu vzorku, zatímco časově úspornější měření potenciálových profilů podle čáry umožňuje studovat kinetiku desorpce vodíku.
Rastrovací Kelvinova sonda (SKP) Wicinski-Wicinski vybavená celou pro kontrolu vlhkosti a kamerovým systémem na korodující straně vzorku |
Respirometrie
Respirometrie je technika vhodná pro studium vývoje molekulárního vodíku za podmínek atmosférické koroze a koroze v roztoku elektrolytu. Korozní proces je doprovázen jak redukcí kyslíku, tak i vznikem vodíku a jeho možnou následnou absorpcí do kovu. Respirometrie umožňuje in-situ monitorování korozního děje a stanovení poměru mezi probíhajícími katodickými reakcemi (redukce kyslíku a vývoj vodíku) v čase.
Metoda je založena na sledování změn parciálních tlaků plynů v cele s korodujícími vzorky. Po aplikaci korozního aktivátoru jsou vzorky vystaveny vlhkému prostředí v hermeticky uzavřené cele. Cela je vybavena dvěma senzory: optickým bezkontaktním kyslíkovým senzorem PICO-O2 a senzorem teploty, tlaku a vlhkosti BME280. Senzory detekují změny parciálního tlaku kyslíku a celkového tlaku systému. Na základě rozdílů těchto parametrů je možné stanovit změnu tlaku způsobenou vývojem vodíku. Technika umožňuje sledování kinetiky celkového korozního děje i jednotlivých katodických reakcí. Vysoká citlivost měření umožňuje detekci velmi malých změn v poměru reakcí.
Po provedení respirometrického měření lze množství vodíku absorbovaného do vzorků stanovit pomocí termální desorpční analýzy.
Respirometrická metoda poskytuje cenné informace pro modelování korozního děje, vývoje vodíku a spotřeby kyslíku v různých aplikacích spojených s atmosférickou korozí a korozí v roztocích. Tyto informace jsou důležité pro zlepšení pochopení korozních procesů a pronikání vodíku do struktury kovů.
Experimentální uspořádání respirometrie |
O nás
Technopark Kralupy, který je součástí Vysoké školy chemicko-technologické v Praze, poskytuje kvalifikované služby v oblasti zkušebnictví, vývoje a transferu technologií průmyslovým partnerům v oblasti stavební chemie a příbuzných oborech.
Kontakt
Skupina Kovové konstrukční materiály
Technopark Kralupy VŠCHT Praha
Náměstí G. Karse 7
278 01 Kralupy nad Vltavou
Telefon: +420 220 446 104, +420 723 242 413
© 2024 Technopark Kralupy